11/2/24, 1:31 AM Linux auditd for Threat Detection [Final] | by IzyKnows | Medium

Openinapp /1 C) Signin
Medium Q Search

Linux auditd for Threat Detection [Final]
Q IzyKnows - Follow
8 minread - Mar 21,2023
@ Listen [ﬁ Share

Part 1: Linux auditd for Threat Detection [Part 1]

Part 2: Linux auditd for Threat Detection [Part 2]

This will be the last of the series and IMO, the most interesting one. I highly

recommend reading part 1 & 2 before reading this.

The focus of this article will be to describe what behaviors allow for which events to
be recorded by auditd. Additionally, you will see where auditd is not capable of

recording certain events, despite verbose settings.
By the end of this article, you should have some answers to the following questions
e What is auditd capable of recording?

e What does auditd miss to record?

e How many record types does auditd generate for a given behavior?

Fair disclaimer, this is a content-heavy article. The intended use however, is to serve
as reference when investigating logs or creating detection rule sets. A quick read
should give you an idea of how to use this article, after which bookmarking it for

later use is how I recommend using it.

Let’s get started.

Recap & Introduction

https://lizyknows.medium.com/linux-auditd-for-threat-detection-final-9d5173706b3f 1/15

11/2/24, 1:31 AM Linux auditd for Threat Detection [Final] | by IzyKnows | Medium
Part 1 of this series covered an introduction to auditd, relevant events to record and

some tips on scalability.

Part 2 talked about how to investigate auditd logs taking a type of process execution

as an example.
If you recall from part 1,

An event on a Linux system may trigger multiple auditd events. There is one primary
event followed by auxiliary events of different record types. These auxiliary events have
supporting information for the event. The number of auxiliary records an event may have
depends upon the path a syscall takes through the kernel and where auditd is designed to
hook into it. At the moment, there’s no mapping table between syscall and record types
generated that I know of.

Till date, I still haven’t found such a table. We hunt adversaries based on several
artifacts, one of them being event logs. We rely on these logs to tell us stories of
what happened. Aside from understanding the semantics of a log event and what it’s
capable of telling us, knowing what log events generate for a given behavior and
why is equally important. The idea is if you understand and what auditd is capable
of telling you for a given behavior (and why), you can not only better decide what’s
worth monitoring for your organization but make sense out of logs you’re thrown to

investigate.

This topic in my opinion, is far more researched in the Windows OS than Linux. You
have great articles that explore the chain of logs generated for a given operation in
Windows. A project worth mentioning is EVTX-ATTACK-SAMPLES from

@SBousseaden which is great when you're looking to answer the question “How

would this attack look in the logs?”. With auditd however, due to the nature of how
the Linux audit subsystem records events, the key in knowing how the logs look for

an operation is in understanding

e What syscall(s) will be triggered for the operation — relatively easy to determine
based on nature of the operation (file creation, process creation, network

connection, etc.)

o What path does that syscall take upon execution vs. where does auditd have

hooks to record it? — not so easy to determine

https://lizyknows.medium.com/linux-auditd-for-threat-detection-final-9d5173706b3f 2/15

11/2/24, 1:31 AM Linux auditd for Threat Detection [Final] | by IzyKnows | Medium
In this article, we look to answer the above questions for some of the common
behaviors of interest to us as defenders. We’ll see a series of executions of these

operations/behaviors as well as what auditd is capable of recording for them.
In this article you will find

e A matrix containing a variety of common behaviors along with the

corresponding records generated by auditd and

o raw and enriched log samples of each via GitHub

I won't be explaining each entry as part 2 should give you that. Instead, I'll highlight

noteworthy points in places I think need it. Please keep in mind, unlike the EVTX
project mentioned above, I'm not working at a technique (or procedure) level. I

focus on the data source level instead.

Data Source to Record Type

Posting the MITRE data sources once again for quick reference

Most Relevant Data Componenets (Top 15)
Enterprise Techniques

Cammand Exscution

Process Creatson

Fite Madificatsan

Fike Creatson

Hetwark Traffic Content
Network Traffic Flow

05 AM Exscutian

Mindows Registry Eey Modification
Module Load

Application Log Content
Retwork Connection Creation
Fite Arcess

Logon Session Creation

File Metadata

User Account Authentication 1 13

o @ & &0 1 120 140
Count of Sub-Technigques

Using the above as my basis, I've extended the simple data source <-> auditd rule

table from part 1 to a data source <-> auditd rule <-> simulated behavior <->

https://lizyknows.medium.com/linux-auditd-for-threat-detection-final-9d5173706b3f

3/15

11/2/24, 1:31 AM Linux auditd for Threat Detection [Final] | by IzyKnows | Medium

generated record types. I've updated some rules as well.

Link to Sheet: https://docs.google.com/spreadsheets/d/10PX-
RX1_OKhwsqbWUqyGJvREim2K6sAOVUYKMmIxMNM/edit?usp=sharing

[xta b st e fbndes et P A By ek = e
Teoosar ot e i e 1 e i
fars i ¥ e o ey b v
f SRR y— raz= P
3 [N — oD
e
et FCHL it
L arad 1 e [T
rar
- tata
L e i e et Ny
o
(e T)
R e rr—
P
[
g i i b . SR e i
oD W g e o e [
TR Fyard e vvss ol g armn o Bk vt T WS OTATD, WTIND
) e pcdentid Ly
ol Aa oo oty et F e BT - ey - et a8 Bt ppp—— ey By ep e iR
T sty
Pals s ot
ks i e e et F e D ey rai= EL s
v s e peet oo
o b i .
e - [Tp— Ve s o = e s sk e o i, o b | e vy
ey o
[ek s g e s
< bsms bl e g 4 1 e priciestay o
P by
agQCERL
vabe
i Ky e - PRI S— TR ram i e s e g e ey g
)
T Ky - d-iﬂ..\-lul.'\'ﬂ 'CIIJ"-\.“ 1
e Lot IW._V-_.'J P MqMJhd—PHwHIhMMMI pe
e B s T P Pate
T g g e R, EEATE SLACH
..... P LT T T r—p—— T oy
P] e e e 1 J-F—'\-u-l.-.-ui—dn_ln—
S Yes ™
= £ a2 et
- et e ek el
PR i M B e A g i e e Blori o
e e A TRE T it Vo TR0 v ol 710 B 1l o s 1 8 e
smn T ~ 8 kb s Tl RN it v e e e i ALY 8o bt b 1 a1

Sneak Preview

At this point to understand the following sections better, I recommend displaying

these 3 windows, preferably side-by-side

e this blog
¢ the above Google sheet

e the corresponding log file for each behavior (link in the Google sheet)

https://lizyknows.medium.com/linux-auditd-for-threat-detection-final-9d5173706b3f

4/15

11/2/24, 1:31 AM Linux auditd for Threat Detection [Final] | by IzyKnows | Medium

B oot e

It can be seen expiaining a waricty of things = how to read the content of

thi leag, cxplanation of why the eve occurmel, parametess passed 10 2

sywall and other important points
Comments: Eils af info] couldn’s i anpehiore el

Lo File: The cornespoaudieg lak to the sudit.og and aadabeg fensiched)

far the given behavior

Moteworthy Points
The sheet [belbeve explains ltself nnd bope it can serve a8 8 roference for
detectson engingers and IR analysts alike when it comes (o underatanding

lerg samplis, part should helg vou wi X gl

[plan b expdain every podnt lilos 1 In part 2, there are some palnts warth
P a DulaSourgedlog & O 4
Nt Tie [ob vew meet Formal Dule Toos Dsmaken e
. X i X . . . @ P WA s L% A BT peefa s W = B F A & E P
= With processfcommand execotion, notios the difference in number of & , — = | 2}
n . PECTITLE
recond types botween the two demonstmted behavhore z
- Motice that flags change based on the way a file is openfmedified T T — L
{edetection capahibing) o =]
= B sire bo look imio the syscall fenction dectamdbons o asdeesiand i
webual’s hating paseed,
9
= Kedg it mivinl, whien vou S5E, teve ase many allier processes that go on
in the background as well b authenticate thi user/setup the
erviromment, vic. I've anly shatmeted the pans related 19 netwaek Ty e ey +
st e CRry—— Tre (el Pl ovacel i 0o Mt L RALTR PTGt 3¢ (P v ara W, G B
T i W s o S Wt ol i i bl | b alin 2

Understanding the Mapping Structure
Within the sheet you'll find each of the auditd-applicable data sources from MITRE’s

chart along with the following columns

Simulated Behavior: Commands executed to be captured by the corresponding data

source

Ran as Root?: Depicting whether the behavior was run with root privileges or not.

This should not make a difference to the logs unless explicitly mentioned

Auditd Rule: Holds the corresponding auditd rule(s) that were active when the given
behavior was executed. Please note that other than the rule(s) depicted in the row,

no additional filtering was performed in the audit.rules file

Record Types: A list of all record types as they appeared in the audit.log post
execution of the simulated behavior commands

Useful information: Holds noteworthy information about the record type event
generated. The explanation here can vary per behavior/record type. It can be seen
explaining a variety of things — how to read the content of the log, explanation of
why the event occurred, parameters passed to a syscall and other important points.
This column will make the most sense when you’re looking at it alongside the actual

raw log event (from GitHub).

https://lizyknows.medium.com/linux-auditd-for-threat-detection-final-9d5173706b3f

5/15

11/2/24, 1:31 AM Linux auditd for Threat Detection [Final] | by IzyKnows | Medium

Comments: Bits of info I couldn’t fit anywhere else

Log File: The corresponding link to the audit.log and audit.log (enriched) for the

given behavior

Noteworthy Points

The sheet I believe explains itself and hope it can serve as a reference for detection
engineers and IR analysts alike when it comes to understanding what the logs are
trying to tell us. If you find it difficult to understand the log samples, part 2 should
help you with a guided example. While I do not plan to explain every point like in

part 2, there are some points worth noting

e Man pages of syscalls can help you understand arguments being passed

e With process/command execution, notice the difference in number of record
types between the two demonstrated behaviors (UC001/UC002). This may
change as you invoke execve() in different ways. The key is in knowing how your
execution sequence happens under the hood. In the case of UC001, Python,
which is found in the $PATH environment variable (not to be confused with
PATH record type), is probably being invoked directly with the filename sent as
a parameter. For the bash execution use case (UC002), because we specify a “/” in
our command, we explicitly tell our shell where the file to execute is (in),
thereby bypassing a PATH check and executing via the current shell. It’s not easy
to have explanations for everything naturally, and you probably won't, but
hopefully these two examples give you some potentially repeatable patterns with
other execution methods

e Across the use cases that have to do with file handling operations (UC003-
UC006), notice how the flags ("al’) change based on the way a file is
open/modified. The flag combinations can tell you for what intention the file

was opened.

e Notice how despite the various methods of file execution, we cannot see the
modified content, not even by monitoring execve. Should someone know a way

to see modification content with auditd, I'd love to know

e UCO003 is an example of how PROCTITLE cannot be trusted for complete

command line. It doesn’t do well with piped/redirect commands.

https://lizyknows.medium.com/linux-auditd-for-threat-detection-final-9d5173706b3f 6/15

11/2/24, 1:31 AM Linux auditd for Threat Detection [Final] | by IzyKnows | Medium
o With UC006, using vim causes a whole load of events when monitoring a folder

since vim creates a bunch of temporary files as part of it's normal execution

e UC009-UCO011 : I could not for the life of me get module loads to log despite
executing different, very common instructions. If someone can trigger it, I'd be
happy to update the sheet

¢ Keep in mind, when you SSH (UC012), there are many other processes that go on
in the background as well to authenticate the user/setup the environment, etc.
I've only abstracted the parts related to network connection creation.

¢ The saddr (UC012, UC013) has a hex value that has to be converted. In my case it
was 0.0.0.0 as I did ssh in from the same host. It’s got a strange encoding format,
this Splunk query can help with decoding

| eval ipaddr = substr(saddr,9,30)
| rex field=ipaddr " (?4)(?<d1>[0-9A-F]{2}) (?<d2>[0-9A-F]{2}) (?<d3>[0-9A-F]{2}) (
| eval ip=tostring(tonumber(d1l,16))+"."+tostring(tonumber (d2,16))+"."+tostring(

¢ Additionally, network creation gives you the destination IP + what process and

user initiated the connection (very useful!)

e For UCO016, ‘file metadata’ as a behavior could mean a wide variety of things.
MITRE'’s definition—

Contextual data about a file, which may include information such as name, the content

(ex: signature, headers, or data/media), user/ower, permissions, etc.”

¢ Auditd isn’t a polling solution like OSQuery, so we only get information about a
file when a process interacts with it. In this case, I'm focusing on permission
changes to the file. Looking through the MITRE techniques associated with this
data source, I couldn’t find any other use case that auditd would do justice to.
We've already covered, in previous data sources, what the logs look like for other
relevant file operations (writing, reading, execution, attribute changes). For
permission-related changes, I'm choosing to monitor specific commands like

chown/chmod. Note that it’s worth while also monitoring syscalls related to

https://lizyknows.medium.com/linux-auditd-for-threat-detection-final-9d5173706b3f 7115

11/2/24, 1:31 AM Linux auditd for Threat Detection [Final] | by IzyKnows | Medium
changing file attributes (fchmod, fchown, lsetxattr, etc.). The audit.rule

references in Part 1 have a verbose list of the syscalls.

e UC017/018: I recommend in general using the secure.log or auth.log for
monitoring authentication activities. Auditd can give it to you too, I've covered

that too for comparison

e UC017: USER_AUTH seems to be more reliable than USER_LOGIN. I noticed
some missing values in USER_LOGIN.

¢ Be careful, when you monitor failed ssh logins using audit.log, depending on
what rules you have, you’ll get a bunch of other events, with success results. For
example, the hosts.allow, hosts.deny files are queried, socket connection (syscall
connect) all show up as successful events. We're focused on whether the actual
authentication event failed/succeeded, which is what you’ll see in the attached
log

Closing Notes

That is a lot of information. While verbose, I do hope it was comprehend-able
nevertheless. Testing the above was time-staking but interesting nevertheless as
many of the results surprised me as well. I tried to find a more reliable way of
determining auxiliary events by looking through the source code but it was so

scattered that I found this ‘bruteforcing’ as a more efficient option.

Like previously mentioned, the intention of this content is to serve as reference to
IR analysts/detection engineers/threat hunters, anyone trying to understand auditd
logs and trying to model them for finding threats. Should you like to add to the

document, please reach out to me, I'd be happy to include it.

With that, we're at the end of this series and I must find a new muse to write about
(Windows internals anyone?). I do hope you found the series useful and feedback is

welcome, I'm not difficult to find :)

Threat Detection Threat Hunting Linux Blue Team

https://lizyknows.medium.com/linux-auditd-for-threat-detection-final-9d5173706b3f 8/15

